Modeling Academic Performance Evaluation using Fuzzy C-Means Clustering Techniques
نویسندگان
چکیده
In this paper we explore the applicability of Fuzzy C-Means clustering technique to student allocation problem that allocates new students to homogenous groups of specified maximum capacity, and analyze effects of such allocations on the academic performance of students. This paper also presents a Fuzzy set and Regression analysis based rules based Fuzzy Expert System model which is capable of dealing with imprecision and missing data that is commonly inherited in the student academic performance evaluation. This model automatically converts crisp sets into fuzzy sets by using C-Means clustering technique for academic performance evaluation.
منابع مشابه
Academic performance evaluation using soft computing techniques
This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...
متن کاملModeling Academic Performance Evaluation Using Hybrid Fuzzy Clustering Techniques
Article history: Received 26 January 2014 Received in revised form 10 March 2014 Accepted 12 March 2014 Available online 31 March 2014
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012